
IBM TRAINING

Terri Menendez

October, 2007

terriam@us.ibm.com

VSAM Record Level Sharing (RLS Overview) Part 1 and 2

®

© IBM Corporation 2007

Notices & Disclaimers
Copyright © 2007 by International Business Machines Corporation.

No part of this document may be reproduced or transmitted in any form without written permission from IBM Corporation.

Product information and data has been reviewed for accuracy as of the date of initial publication. Product information and
data is subject to change without notice. This document could include technical inaccuracies or typographical errors. IBM
may make improvements and/or changes in the product(s) and/or programs(s) described herein at any time without notice.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such such
products, programs or services available in all countries in which IBM operates or does business. Consult your local IBM
representative or IBM Business Partner for information about the product and services available in your area.

Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product
may be used. Any functionally equivalent program, that does not infringe IBM's intellectually property rights, may be used
instead. It is the user's responsibility to evaluate and verify the operation of any non-IBM product, program or service.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR INFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted according to the terms and conditions of the agreements (e.g., IBM Customer Agreement, Statement of
Limited Warranty, International Program License Agreement, etc.) under which they are provided. IBM is not responsible
for the performance or interoperability of any non-IBM products discussed herein.

Notices & Disclaimers
The performance data contained herein was obtained in a controlled, isolated environment. Actual results that may be
obtained in other operating environments may vary significantly. While IBM has reviewed each item for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.

The responsibility for use of this information or the implementation of any of these techniques is a customer responsibility
and depends on the customer's or user's ability to evaluate and integrate them into their operating environment.
Customers or users attempting to adapt these techniques to their own environments do so at their own risk. IN NO
EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS INFORMATION, INCLUDING
BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF
OPPORTUNITY.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not necessarily tested those products in connection with this
publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM
patents or copyrights. Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

Agenda
� Overview of RLS z/OS Release enhancements.

� IBM Products Exploiting RLS.

�Record Level Sharing - Design direction.

�Review of base VSAM.

�Share Options

�Buffering

�locking

�RAS

�Performance Measurements

�Review of RLS

�Share Options

�Buffering

�locking

�RAS

�Performance Measurement

Agenda
(continued)
�RLS/TVS Configuration Changes

�Parmlib Changes

�SYSPLEX with SMSVSAM

�SMSVSAM Initialization

�SMSVSAM Commands

�RLS/CICS Environment

�CICS and base VSAM FOR configuration

�CICS and RLS configuration

�RLS/CICS data recovery

�RLS/CICS automation enhancements

Agenda
(continued)
Transactional VSAM (TVS)

�Hardware/Software Requirements

�Application Requirements

�Multiple Lock Structure (future enhancement)

�Recommended APARs

�Summary

RLS z/OS Release
Enhancements

RLS z/OS Release Enhancements

�OS/390 2.1 - VSAM RLS general availability (1996)

�z/OS 1.4 - Transactional VSAM (priced feature)

� All z/OS Releases - RAS support shipped via APARs

�z/OS 1.7 - VSAM RLS 64 Buffering

�z/OS 1.8 - RMF support for 64 bit buffering. RAS support.
RSM changes.

�z/OS 1.9 – RAS support, sysplex wide dumping.

�z/OS x.x - Multiple Lock Structure support

�z/OS x.x - CA Reclaim

IBM Products Exploiting VSAM
RLS

IBM Products Exploiting RLS/TVS:

�CICS

�HSM

�INFOMAN

�SCLM

�IMS (RLS and TVS)

Record Level Sharing (RLS) –
Design Direction

Record Level Sharing (RLS) -
Design

�VSAM RLS is another method of access, to your existing
VSAM files, which provides full read and write integrity at
the record level, to any number of users in your parallel
sysplex.

Review of Base VSAM

Review of Base VSAM

�Share options

�Buffering

�Locking

�RAS

�Performance Measurements

Review of Base VSAM

�Share options.

�attribute of the data set.

�SHAREOPTIONS(crossregion,crosssystem)
�SHAREOPTIONS(1,x) - Defined as one user opened to the data set for read/write
or any number of users for input only. VSAM provides full read/write integrity.

�SHAREOPTIONS(2,x) - Defined as one user opened to the data set for read/write
and any number of users for input VSAM provides full read/write integrity for the
read/write user, however, the readers do not receive read integrity.

�SHAREOPTIONS(3,x) - Defined as any number of users opened to the data set for
read/write. VSAM does not provide any read/write integrity.

�SHAREOPTIONS(4,x) – VSAM will flush buffers after each request.

�ACB MACRF=(DDN/DSN) is the only real mechanism for sharing VSAM
files.

Example of ShareOptions (2,x)

AddressSpace1
//dd1 DD DSNAME=dataset1

OPEN ACB1 ddname=dd1,
macrf=(out)

ACB

AMBL AMB

//dd2 DD DSNAME=dataset1
OPEN ACB1 ddname=dd2,
macrf=(out,dsn)

ACB

AMBL AMB

AddressSpace2
//dd1 DD DSNAME=dataset1

OPEN ACB1 ddname=dd1,
macrf=(in)

(no read integrity)(read/write integrity)

... ...

Base VSAM - Buffering

�Base VSAM provides 3 types of buffering: ACB
macrf=(NSR/LSR/GSR).

�NSR - Non-Shared Resources

�LSR - Local Shared Resources

�GSR - Global Shared Resources

�For LSR/GSR, user defined the buffer pool:

POOL1 BLDVRP BUFFERS=(1024(5)),

STRNO=4,

TYPE=LSR,

MODE=31,

RMODE31=ALL

Example of LSR Buffering

AddressSpace1

Buffer

RPL1
GET Record1
.
.
.

(read/write integrity)

...Buffer Buffer

RPL2
GET Record1
.
.
.

RPL3
GET Record2
.
.
.

Base VSAM - Locking

�Base VSAM serializes on a CI level.

�Multiple users attempting to access the same CI for read
and write either defer on the CI or are returned an exclusive
control conflict error by VSAM.

�CIs with many records per CI, or applications that
repeatedly access the same CI can have a performance
impact due to retrying of exclusive control conflict errors.

Example of Base VSAM LSR Serialization

Scope = Single LSR Buffer
Pool
Granularity = Control Interval
Ownership = RPL

Record A
Record B
Record C
Record D
Record E

Control
Interval

GET UPD RPL_1

(Record B)
GET UPD RPL_2

(Record E)

�fails - Exclusive Control
Conflict

Base VSAM - RAS

�Base VSAM has little to no first time data capture, and
internal recovery, for logic errors.

�.All resources are obtained in a single address space.

� EOT acted as cleanup routine (plus estae stacked by open/close).

� Performance highly valued over RAS.

� RAS in general was not a major requirement when VSAM was developed.

�End result:

�Difficult problems to debug.

�Broken data sets and data integrity problems.

Base VSAM – Performance
Measurements

�Base VSAM provides SMF 62 and 64 records.

�.SMF 62 – Created by OPEN for each ACB.

� SMF 64 - Created by EOV and CLOSE for each ACB, however, the stats
represent the sum of all ACBs connected to the control block structure.

Review of RLS

Review of RLS

�Share options

�Example of RLS Readers/Writers

�Example of Shareoption (2,x) with RLS and base VSAM

�Buffering

�Locking

�RAS

�Performance Measurements

Review of RLS

�Share options.

�largely ignored by RLS.

�Exception is SHAREOPTIONS(2,x) -
�Now defined as one user opened to the data set for non-RLS read/write and any
number of users for non-RLS read. VSAM provides full read/write integrity for the
non-RLS read/write user, however, the readers do not receive read integrity.

� Or, any number of users opened for RLS read/write and any number of users for
non-RLS read. VSAM provides full read/write integrity for the RLS users and no
read integrity for the non-RLS readers.

Example of RLS Readers/Writers

AddressSpace1

OPEN ACB macrf=(rls,out)
(read/write integrity)

(read/write integrity)

System1 Systemn

AddressSpace1

AddressSpace n

OPEN ACB1 macrf=(rls,in),
rlsread=cr

SMSVSAM Dataspace

ACB

ACB AMBL

AMBL

AMB

AMB ...
...

OPEN ACB macrf=(rls,out)
(read/write integrity)

SMSVSAM Dataspace

ACB

ACB AMBL

AMBL

AMB

AMB ...
...

AddressSpace n

(no read integrity)

OPEN ACB1 macrf=(rls,in),
rlsread=nri

Example of Shareoption (2,x) with
RLS and base VSAM

AddressSpace1

OPEN ACB macrf=(rls,out)
(read/write integrity)

(read/write integrity)

System1 Systemn

AddressSpace1

AddressSpace2

OPEN ACB1 macrf=(rls,in),
rlsread=cr

SMSVSAM Dataspace

ACB

ACB AMBL

AMBL

AMB

AMB ...
...

OPEN ACB macrf=(rls,out)
(read/write integrity)

SMSVSAM Dataspace

ACB

ACB AMBL

AMBL

AMB

AMB ...
...

AddressSpace2

(no read integrity)

OPEN ACB1 macrf=(nsr,in)
ACB AMBL AMB ...

RLS - Buffering

�VSAM now provides 4 types of buffering: ACB
macrf=(NSR/LSR/GSR/RLS).

�NSR - Non-Shared Resources

�LSR - Local Shared Resources

�GSR - Global Shared Resources

�RLS - Record Level Sharing

�Each image in the sysplex has one 31 bit local buffer pool,
(located in a dataspace) with a current maximum size of 1.7
gig and one 64 bit pool located in the SMSVSAM address
space. Both buffer pools are managed by LRU.

�Pool sizes controlled by PARMLIB parameters:
RLS_Max_Pool_Size (31 bit pool) and
RLSAboveTheBarMaxPoolSize (64 bit pool).

�Buffer coherency is maintained through the use of CF
cache structures and the XCF cross-invalidation function.

�The LRU for the 31 bit pool operates in the following 4
modes:

�Normal Mode - Total pool size is less than 80% of RLS_Max_Pool_Size.

�Maintenance Mode - Total pool size is greater than 80% and less than
120% of RLS_Max_Pool_Size.

�Accelerated Mode - Total pool size is greater than 120% and less than 2*
RLS_Max_Pool_Size.

�Panic Mode - Total pool size is greater than 2* RLS_Max_Pool_Size or
greater than 1728M.

LRU

�The LRU will release 31 bit buffers as follows:

�Normal Mode - IGWBLCRU will release invalid and paged out buffers.
�Initial_Free_UIC = 240.

�Buffer_UIC + 1.

�Maximum age of buffers is 60 minutes.

�Maintenance Mode - Reduce Initial_Free_UIC by 1. If Buffer_UIC >
Intial_Free_UIC_Count then buffer is released (22.5 minutes max).

�Accelerated Mode - Reduce Initial_Free_UIC by 4. If Buffer_UIC >
Initial_Free_UIC then buffer is released. Requests for new buffers will first
be stolen. If there are no buffers to steal a new get block will be done (7.5
minutes max).

�Panic Mode - Reduce Initial_Free_UIC by 8. If Buffer_UIC >
Initial_Free_UIC then buffer is released. Requests for new buffers will first
be stolen (3.75 minutes max). If no buffers to steal, the request will be put
to sleep until the LRU runs.

LRU

�Setting the Local Buffer Pool Size – Considerations (cont):

�The LRU for the 64 bit buffer pool operates in four modes:
�Normal Mode - Total 64 bit pool size is less than 80% of
RLSAboveTheBarMaxPoolSize.

�Maintenance Mode - Total 64 bit pool size is greater than 80% and less than 90%
of RLSAboveTheBarMaxPoolSize.

�Accelerated Mode - Total 64 bit pool size is greater than 90% and less than
100% of RLSAboveTheBarMaxPoolSize.

�Panic Mode - Total 64 bit pool size is greater than 100% of
RLSAboveTheBarMaxPoolSize

LRU

�The LRU will release 64 bit buffers as follows:

�Normal Mode - Buffers 60 minutes or older will be released.

�Maintenance Mode - Buffers 60 minutes or older will be released.

�Accelerated Mode - Buffers 30 minutes are older will be released.
Requests for new buffers will first be stolen. If there are no buffers to steal
a new get block will be done.

�Panic Mode - Buffers 5 minutes are older will be released. Requests for
new buffers will first be stolen. If there are no buffers to steal, the request
will sleep until LRU runs.

LRU

Buffer
Time=40

RLSAboveTheBarMaxPoolSize(500)
RLS_Max_Pool_Size(100)

SMSVSAM Address Space

TCB IGWBCMON
TCB IGWBCLRU
TCB IGWBC64

System n

SMSVSAM Dataspace 2 Gig (31 bit pool)

ACB AMBL AMB ...

400M
Buffer

Time=5

CF

RLS CACHE

SYS1.PAGE

80M

{

{Normal Mode

Accel Mode

Panic Mode

Buffer
Time=xx

Buffer
Time=xx

Buffer

Buffer

Buffer
Time=30

Buffer
Time=60

Buffer
Time=xx

Buffer
Time=60 Maint Mode

450M
Buffer

Time=70 {

Buffer
Time=30

500M

Buffer
Time=5 {

Buffer
UIC=0

Buffer
UIC=1

Buffer
UIC=2

Buffer
UIC=240

Setting up Parameters/Structures
sizes

�Local Buffer Pool Sizes:

�RLS_MAX_POOL_SIZE(nnnn) Where nnnn = (10 to 9999), anything over 1500 is treated as
a maximum of 1728M.

�RLSAboveTheBarMaxPoolSize(sysname1,nnnn) Where nnnn is either 0, or 500M to
2,000,000M

�RLS_MaxCFFeatureLevel(Z/A)

� Pool Size values are a goal for which the LRU tries to maintain. If more
buffers are required at any given time, the pool may temporarily exceed the
values set.

�Real Storage - Total amount of buffer pools should not exceed amount of
real storage. A paged out buffer is immediately freed by the LRU.

Sizing the RLS Cache Structures

�The “ideal” cache structure size:

� Total_Cache_Sturcture_sizes = ((RLS_Max_Pool_Size) *
Number_of_SMSVSAMs_in_Sysplex) +
(RLSAboveTheBarMaxPoolSize(system1) + …
+RLSAboveTheBarMaxPoolSize(systemn))

� Assumes the following:

• RLS_MaxCFFeaturelevel(A) - caching all data

• No sharing of data across the sysplex.

• If more than one cache structure to be allocated, Data sets are
“evenly” distributed (size, number, amount of data accessed) between
the individual cache structures.

Example CPU Time for GET Request

�Get request in which all CIs were found in the local buffer
pool: .0001xx - .0002xx seconds

�Get Request in which at least the one CI is read from
DASD: .001x - .02xxxx Seconds

Example CPU Time for GET Request

�Get request in which all CIs were found in the local buffer
pool: .0001xx - .0002xx seconds

�Get Request in which at least the one CI is read from
DASD: .001x - .02xxxx Seconds

RLS Buffer Invalidate Example

�GET UPD - Record A
�Locate Record A
�EXCL Lock on Record A
�Test Buffer Validity

�Buffer is valid
�Return record to caller

�GET NUP,CR - Record A
�Locate Record A
�SHR Lock on Record A

�WAIT for Lock

USER 1 (WRITER) USER 2
(READER)

. . .
Record A (Version 1)
. . .

. . .
Record A (Version 1)
. . .

� CF cache write CI / DASD write
�CF invalidates User 2's buffer

. . .
Record A (Version 2)
. . .

�Test Buffer Validity
�Buffer is invalid

�Refresh buffer
�CF Cache Read

. . .
Record A (Version 2)
. . .

C
I

C
I

CI C
I

�Locate Record A
�Return record to caller
�Release SHR Lock on Record A

�PUT UPD - Record A (Version 2)

�Release EXCL Lock on Record A

System1 System2

RLS - Locking

�RLS serializes on a record level.

�Users updating or inserting a record will hold the lock
exclusive for the duration of the write request or
transaction.

� Users reading a record will hold the lock share when
consistent read (CR) is specified. Lock is released at end
of request

�ACB RLSREAD=CR

�//dd1 DD dsn=datasetname,RLS=CR

RLS - Locking (cont.)

�Users reading a record will not obtain any locks when no
read intergrity (NRI) is specified.

�ACB RLSREAD=NRI

�//dd1 DD dsn=datasetname,RLS=NRI

�Users reading a record will hold the lock share when
consistent read extended (CRE) is specified. The lock is
released at the end of the transaction:

�ACB RLSREAD=CRE

�//dd1 DD dsn=datasetname,RLS=CRE

�RLS locking is performed through the use of a CF lock
structure and the XES locking services.

Example of VSAM RLS Serialization

Scope = Sysplex
Granularity = Record
Ownership = CICS Transaction or Batch
Job

Record A
Record B
Record C
Record D
Record E

Control
Interval

CICS1.Tran1

GET UPD RPL_1
(Record B)

CICS2.Tran2

GET UPD RPL_2
(Record E)

CICS3.Tran3

GET CR RPL_3
(Record B)

Record B
�Holder (EXCL)

–CICS1.Tran1
�Waiter (SHARE)

–CICS3.Tran3

Record E
�Holder (EXCL)

–CICS2.Tran2

VSAM RLS Locks

–Waits for record lock

Overview of Get Path
RLS Client AddressSpace

OPEN ACB MACRF=RLS,

RLSREAD=CR
GET Dir,Asy Key1

(VRM)
PC

Index_search:

(Call BMF to locate Index CIs, if no_buffer Call SCM to read from CF

or DASD)

Lock_Record;

(Call SMLS to obtain record lock)

Get_Data_CI:

(Call BMF to locate Data CI, If no_buffer Call SCM to read from CF

or DASD

UnLock_Record:

(Call SMLS to release record lock)

Buffer

32768M

Buffer Buffer
Buffer

SMSVSAM Address Space

RLSAboveTheBarPool

Directory Entry

Data Element

2,000,000M

ACB AMBL AMB
...

1728M
Buffer

Buffer Buffer
Buffer

2,000M

Record Lock

RTE

RLSCache

IGWLOCK00

CI CI

CI CI

Index Component

Data Component

Coupling

Facility

SMSVSAM DataSpace

(VRM…)

RLS - RAS

�RLS provides extensive first time data capture for logic
errors.

�Many "health checks" in the code which produce ABEND0F4 dumps to
capture the problem at the earliest possible point.

�All mainline paths protected by recovery routines which force the data set
to be closed in order to prevent damage to the data set.
�Initial recovery design terminated SMSVSAM.

�New recovery design marks data set as unusable.

�Extensive logging and tracing facilities.

�RAS is considered a high priority element of RLS design..

�End result:

�Problems easier to debug..

�Much less likely for broken data sets or data integrity problems.

RLS Performance Measurements

�SMF 62 and 64

• SMF 62 – Created by RLS OPEN for each ACB.

• SMF 64 – Created by RLS EOV and CLOSE for each ACB. Stats are on
an ACB level.

�SMF 42 Subtypes 15, 16, 17, 18, 19

� Subytpe 15 - RLS statistics by Storage Class

� Subtype 16 - RLS statistics by Data set

• Must use V SMS,MONDS(spherename),ON to collect subtype 16
statistics.

� Subtype 17 - RLS locking Statistics for IGWLOCK00

� Subtype 18 - RLS caching Statistics

� Subtype 19 - BMF statistics

� SMF formatter soon to be available as part of our IPCS VERBX SMSXDATA

� Note: Only one system in the sysplex collects the SMF 42 records. The
system collecting the records is displayed in the D SMS,SMSVSAM operator
command.

RLS/TVS Configuration
Change

Configuration Changes

�Update CFRM policy to define lock, cache, list, log structures.

�See DFSMSdfp Storage Administration Reference for sizing info.

�Update SYS1.PARMLIB(IGDSMSxx) with RLS/TVS parameters.

�See MVS Initialization and Tuning.

�Define new SHCDSs (Share Control Data Sets).

�See DFSMSdfp Storage Administration Reference.

�Update SMS configuration for Cache Sets.

�See DFSMSdfp Storage Administration Reference.

�Update data sets with LOG(NONE/UNDO/ALL) and LOGSTREAMID.

�See Access Methods Services for ICF.

System Requirements - PARMLIB
Changes

SYS1.PARMLIB(IGDSMSxx)

SMS ACDS(acds) COMMDS(commds)

INTERVAL(nnn|15) DINTERVAL(nnn|150)

REVERIFY(YES|NO) ACSDEFAULTS(YES|NO)

SYSTEMS(8|32) TRACE(OFF|ON)

SIZE(nnnnnK|M) TYPE(ALL|ERROR)

JOBNAME(jobname|*) ASID(asid|*)

SELECT(event,event....) DESELECT(event,event....)

DSNTYPE(LIBRARY|PDS) DSSTIMEOUT(nnn|0)

RLSMAXCFFEATURELEVEL(A|Z) RLS_MAX_POOL_SIZE(nnn|100)

RLSINIT(NO|YES) SMF_TIME(NO|YES)

CF_TIME(nnn|3600) BMF_TIME(nnn|3600)

CACHETIME(nnn|3600) DEADLOCK_DETECTION(iii|15,kkk|4)

RLSTMOUT(nnn|0) RLSAboveTheBarMaxPoolSIze(system,size)

RLSFixedPoolSize(system.size) SYSNAME(sys1,sys2,...)

TVSNAME(nnn1,nnn2....) MAXLOCKS(max|0,incr|0)

TV_START_TYPE(WARM|COLD,WARM|COLD...) AKP(nnn|1000,nnn|1000)

LOG_OF_LOGS(logstream) QTIMEOUT(nnn|300)

SYSPLEX with SMSVSAM (and
TVS) - Example

CF1

DataSet1
LOG(NONE/
UNDO/ALL)

Forward
Recovery
log

IGWLOCK00

RLSCache

LogStream

SYSTEM1

CICS AOR1

SMSVSAM

SMSVSAM Dataspace

31 bit Buffer
Pool

VSAMPGM1

RLS

RLS

RRS IMS

DB2 MVS
Logger

LogStream

LogStream

System1
UndoLog
ShuntLog

Systemn
UndoLog
ShuntLog

SYSTEMn

CICS AORn

SMSVSAM

SMSVSAM Dataspace

31 bit Buffer
Pool

VSAMPGMn

RLS

RLS

RRS IMS

DB2 MVS
Logger

64 bit pool
64 bit pool

SMSVSAM Initialization

SMSVSAM Initialization
IGW619I ACTIVE SHARE CONTROL DATA SET 209

SYS1.DFPSHCDS.ACTIVE2.VSPLXPK ADDED.

IGW619I SPARE SHARE CONTROL DATA SET 283

SYS1.DFPSHCDS.SPARE.VSPLXPK ADDED.

IGW321I Running Protocol 4

IXL014I IXLCONN REQUEST FOR STRUCTURE IGWLOCK00 313

WAS SUCCESSFUL. JOBNAME: SMSVSAM ASID: 0009

CONNECTOR NAME: SYSTEM1 CFNAME: FACIL01

IGW321I System Ordinal is 1

IGW453I SMSVSAM ADDRESS SPACE HAS SUCCESSFULLY 316

CONNECTED TO DFSMS LOCK STRUCTURE IGWLOCK00

IGW321I No retained locks

IGW321I 0 RLS Sphere Record Table Entries read

IGW321I 0 RLS Sphere Record Table Entries deleted

IGW321I No Spheres in lost locks

SMSVSAM Initialization (cont.)
IGW414I SMSVSAM SERVER ADDRESS SPACE IS NOW ACTIVE.

IGW467I DFSMS RLS_MAX_POOL_SIZE PARMLIB VALUE SET DURING 354

SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1

CURRENT VALUE: 100

IGW467I DFSMS DEADLOCK_DETECTION PARMLIB VALUE SET DURING 355

SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1

THIS SYSTEM IS OPERATING AS THE GLOBAL DEADLOCK PROCESSOR.

CURRENT VALUE: 15 4

.

.

IGW467I DFSMS RLS_MAXCFFEATURELEVEL PARMLIB VALUE SET DURING

SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1

CURRENT VALUE: Z

SMSMVSAM Initialization (with TVS)
- (cont.)

SYSTEM1 05008 11:34:01.17 IGW467I DFSMS TVSNAME PARMLIB VALUE SET DURING 578

SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM:

SYSTEM1 TVSNAME: IGWTV001

SYSTEM1 05008 11:34:01.18 IGW467I DFSMS TRANSACTIONAL VSAM UNDO LOG PARMLIB VALUE SET

DURING SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM:

SYSTEM1 UNDO LOGSTREAM NAME:

IGWTV001.IGWLOG.SYSLOG

SYSTEM1 05008 11:34:01.18 IGW467I DFSMS TRANSACTIONAL VSAM SHUNT LOG PARMLIB VALUE SET

DURING SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM:

SYSTEM1 SHUNT LOGSTREAM NAME:

IGWTV001.IGWSHUNT.SHUNTLOG

.

.

SYSTEM1

System Requirements - SMSVSAM
Initialization - Example

SYSTEM1 05008 11:34:01.18 IGW467I DFSMS TRANSACTIONAL VSAM TVS_START_TYPE PARMLIB

VALUE SET DURING SMSVSAM ADDRESS SPACE INITIALIZATION

ON SYSTEM: SYSTEM1 TVSNAME VALUE: IGWTV001

CURRENT VALUE: WARM 1

SYSTEM1 05008 11:34:06.29 IGW860I TRANSACTIONAL VSAM HAS SUCCESSFULLY REGISTERED

WITH RLS

SYSTEM1 05008 11:35:36.63 IGW865I TRANSACTIONAL VSAM INITIALIZATION IS COMPLETE.

SYSTEM1 05008 11:35:36.65 IGW886I 0 RESTART TASKS WILL BE PROCESSED DURING

TRANSACTIONAL RESTART PROCESSING

SYSTEM1 05008 11:35:36.65 IGW866I TRANSACTIONAL VSAM RESTART PROCESSING IS COMPLETE.

.

.

.

SYSTEM1

SMSVSAM Commands

SMSVSAM Display Commands

D SMS[,

[,CFCACHE(structurename|*)]

[,CFLS]

[,CFVOL(volid)]

[,DSNAME(dsn){,WTOR}]

[,JOB(jobname){,WTOR}]

[,LOG({logstreamid|ALL}{,WTOR}]

[,MONDS(specmask|*)]

[,SHCDS]

[,SHUNTED,{SPHERE(sphere)|UR({urid|ALL}}{,WTOR}]

[,SMSVSAM[,ALL]]

SMSVSAM Display Commands
(cont)

D SMS[,

[,TRANVSAM[,ALL][,ALLLOGS][,WTOR]]

[,URID({urid|ALL}){,WTOR}]

D SMS,SMSVSAM,DIAG(CONTENTION)

D SMS,SMSVSAM (example)

D SMS,SMSVSAM

DISPLAY SMS,SMSVSAM - SERVER STATUS

SYSNAME: SYSTEM1 AVAILABLE ASID: 0033 STEP: SmsVsamInitComplete

DISPLAY SMS,SMSVSAM - JOB STATUS

SUBSYSTEMS CONNECTED: 1 BATCH: 1

DISPLAY SMS,SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)

CONNECT STATUS:

SYSNAME: SYSTEM1 ACTIVE RSN: 02010407 RbldNotActive

COMPOSITE STATUS:

ORIGINAL STRUCTURE: NOT VOLATILE FAILURE ISOLATED

NEW STRUCTURE: NOT VOLATILE FAILURE ISOLATED

STRUCTURE STATUS:

SYSNAME: SYSTEM1 Duplex

.

.

.

System Requirements - SMSVSAM
Displays

- 13.19.03 SYSTEM1 d sms,tranvsam

13.19.04 SYSTEM1 IEE932I 023

IGW800I 13.19.04 DISPLAY SMS,TRANSACTIONAL VSAM

DISPLAY SMS,TRANSACTIONAL VSAM - SERVER STATUS

System TVSNAME State Rrs #Urs Start AKP QtimeOut

-------- -------- ------ ----- -------- --------- -------- --------

SYSTEM1 IGWTV001 ACTIVE REG 0 WARM/WARM 200 400

DISPLAY SMS,TRANSACTIONAL VSAM - LOGSTREAM STATUS

LogStreamName State Type Connect Status

-------------------------- ---------- ---------- --------------

IGWTV001.IGWLOG.SYSLOG Enabled UnDoLog Connected

IGWTV001.IGWSHUNT.SHUNTLOG Enabled ShuntLog Connected

SYSTEM1

SMSVSAM Vary Commands

V SMS,{CFCACHE(cachename),{ENABLE|E } }

{ {QUIESCE|Q} }

{CFVOL(volid),{ENABLE|E } }

{ {QUIESCE|Q} }

{MONDS(dsname[,dsname...]),{ON|OFF} }

{SHCDS(shcdsname),{NEW } }

{ {NEWSPARE} }

{ {DELETE } }

{SMSVSAM,{ACTIVE }

{ {FALLBACK }

{ {TERMINATESERVER }

{ {FORCEDELETELOCKSTRUCTURE }

SMSVSAM Vary Commands

V SMS,{TRANVSAM({tvsname|ALL}){,{QUIESCE|Q}} }

{ {,{ENABLE|E }} }

{ {,{DISABLE|D}} }

{ }

{LOG(logstreamid){{,QUIESCE|Q}} }

{ {,{ENABLE|E }} }

{ {,{DISABLE|D}} }

{ }

{SMSVSAM,SPHERE(sphere){,{QUIESCE|Q}} }

{ {,{ENABLE|E }} }

{ }

{TRANVSAM(tvsname),PEERRECOVERY{,{ACTIVE|A }}}

{ {,ACTIVEFORCE }}

{ {,{INACTIVE|I}}}

RLS/CICS Environment

RLS/CICS Environment

�CICS and base VSAM FOR configuration.

�Advantages and disadvantages of the FOR/AOR configuration.

�CICS and RLS configuration.

�Advantages and disadvantages of the CICS/RLS configuration.

�RLS/CICS data recovery.

�Recoverable data sets.

�Recoverable subsystems.

�Retained locks.

�Lost locks.

�IDCAMS SHCDS commands

�QUICOPY/QUIBWO interface.

RLS/CICS Environment

�RLS/CICS automation enhancements.

�QUIOPEN/QUICLOSE interface.

CICS FOR/AOR Configuration

CICS FOR

OPEN ACB macrf=(LSR,out)

(read/write integrity)

System1 System2

CICS AOR

ACB AMBL AMB ...

CICS AOR

CICS AOR

CICS AOR

CICS AOR

...

...

RLS/CICS Configuration

CICS AOR1

OPEN ACB macrf=(rls,out)
(read/write integrity)

(read/write integrity)

System1 Systemn

CICS AOR n

CICS AOR n

OPEN ACB macrf=(rls,out)

SMSVSAM Dataspace

ACB

ACB AMBL

AMBL

AMB

AMB ...
...

OPEN ACB macrf=(rls,out)
(read/write integrity)

SMSVSAM Dataspace

ACB

ACB AMBL

AMBL

AMB

AMB ...
...

CICS AOR n

(read/write integrity)

OPEN ACB macrf=(rls,out)

RLS/CICS Data Recovery

�Recoverable data sets

�defined as LOG(UNDO/ALL) in the catalog.
�UNDO - backout logging performed by CICS (or TVS).

�ALL - both backout and forward recovery logging (or TVS).

�LOG(ALL) data sets must have a LOGSTREAMID(forwardecoverylog) also
defined in the catalog.

�Non-Recoverable data sets

�defined as LOG(NONE) in the catalog.
�No logging performed by CICS (or TVS).

�Recoverable Subsystems.

�CICS (and TVS) must register with the SMSVSAM address space with a
"subsystemname" so that locks obtained by that subsystem can be
tracked.

RLS/CICS Data Recovery

�Retained locks

�Record locks are converted to "retained" in the event of a failure. The
"owning" subsystem is the only subsystem that may access the record
locks during recovery. All other subsystems or VSAM RLS applications will
received a retained lock error in the RPL

�SMSVSAM automatically notifies CICS when SMSVSAM restarts. CICS
will automatically perform backouts when the file is reopened.

�Lost Locks

�A data set which had actively held locks and a system failure occurs
resulting in the loss of the RLS lock structure and at least one of the RLS
address spaces at the exact same time.

�Only the owning subsystem of the active locks may open the file and
recovery the record locks. All other RLS opens will be failed until the data
set has been fully recovered.

Retained Lock Example

SYSTEM1

CICS AOR1

SMSVSA
M

SMSVSAM
Dataspace

ACB OPEN macrf=(rls,out)
Trans1

PUT record1
PUT record2

SYSTEMn

CF1

DataSet1
LOG(ALL)

ACB

AMBL
AMB

IGWRETLK
IGWRETLK

IGWLOCK00

Lock Table

Record Table

Record lock 1

Record lock 2

RTE lock 1 - (retained)

RTE lock 1 - (retained)

CICS
logs

CICS AORn
ACB OPEN macrf=(rls,out)
Trans1

GET record1
RC=8 RSN=24

SMSVSA
MIGWRETLK
IGWRETLK

SMSVSAM
DataspaceACB

AMBL
AMB

Lost Lock Example

SYSTEM1

CICS AOR1

SMSVSA
M

SMSVSAM
Dataspace

ACB OPEN macrf=(rls,out)
Trans1

PUT record1
PUT record2

SYSTEMn

CF1

DS1
LOG(ALL)

ACB

AMBL
AMB

IGWRETLK
IGWRETLK

IGWLOCK00

Lock Table

Record Table

Record lock 1

Record lock 2

RTE lock 1 - (retained)

RTE lock 1 - (retained)

SHCDS
AOR1/DS1

CICS AORn
ACB OPEN macrf=(rls,out)
Rc=8 ACBERFLG=AF
IEC161I 241-0580

SMSVSA
MIGWRETLK
IGWRETLK

SMSVSAM
DataspaceACB

AMBL
AMB

RLS/CICS Data Recovery

�IDCAMS SHCDS commands

�Used to list information about data set, clients, subsystems, etc. using
RLS.

�QUICOPY/QUIBWO interface.

�Called by DSS to communicate with CICS (via the SMSVSAM) address
space to inform CICS when a DSS copy/backup begins and ends.

�Allows DSS to either take a "sharp" copy (via the QUICOPY interface) or a
"fuzzy" copy (via the QUIBWO interface).

�CICS will halt new transactions when a QUICOPY is under way. New
opens will not be allowed during a QUICOPY.

�CICS will log the start and end of the copy/backup operation. The data set
can then be fully recovered from the last backup.

SHCDS Commands
SHCDS {{LISTDS(base_cluster_name) {JOBS}} |

{LISTSUBSYS(subsystem_name|ALL)} |

{LISTSUBSYSDS(subsystem_name)} |

{LISTRECOVERY(base_cluster_name|ALL)} |

{LISTALL} |

{FRSETRR(base_cluster_name)} |

{FRUNBIND(base_cluster_name)} |

{FRBIND(base_cluster_name)} |

{FRRESETRR(base_cluster_name)} |

{FRDELETEUNBOUNDLOCKS(base_cluster_name)} |

{PERMITNONRLSUPDATE(base_cluster_name)} |

{DENYNONRLSUPDATE(base_cluster_name)} |

{REMOVESUBSYS(subsystem_name)} |

{CFREPAIR({INFILE(ddname) |

INDATASET(datasetname)}

SHCDS Commands (continued)
{LIST|NOLIST})}

{CFRESET({INFILE(ddname) |

INDATASET(datasetname)}

{LIST|NOLIST})}

{CFREPAIRDS({base_cluster_name |

{partially_qualified_base_cluster_name)

{CFRESETDS({base_cluster_name |

{partially_qualified_base_cluster_name)

{LISTSHUNTED {SPHERE(base_cluster_name) |

URID(urid) |

DATA(urid)}}

{RETRY {SPHERE(base_cluster_name) |

URID(urid)}}

{PURGE {SPHERE(base_cluster_name) |

URID(urid)}}

SHCDS Example
__

ISPF Command Shell

Enter TSO or Workstation commands below:

===> SHCDS LISTSUBSYS(aor1)

----- LISTING FROM SHCDS ----- IDCSH03 ---

RECOVERY LOCKS LOCKS LOCKS

SUBSYSTEM NAME STATUS NEEDED HELD WAITING RETAINED

________________ ______________ _______ _____ _______ _________

AOR1 ONLINE--FAILED YES 0 0 1

DATA SETS IN LOST LOCKS------------ 0

DATA SETS IN NON-RLS UPDATE STATE-- 0

TRANSACTION COUNT------------------ 1

SHCDS Example

__

ISPF Command Shell

Enter TSO or Workstation commands below:

===> SHCDS LISTDS('dataset1*')

----- LISTING FROM SHCDS ----- IDCSH02 ---

DATA SET NAME----dataset1

CACHE STRUCTURE----CACHE01

RETAINED LOCKS---------YES NON-RLS UPDATE PERMITTED---------NO

LOST LOCKS--------------NO PERMIT FIRST TIME----------------NO

LOCKS NOT BOUND---------NO FORWARD RECOVERY REQUIRED--------NO

RECOVERABLE------------YES

SHCDS Example (cont.)

SHARING SUBSYSTEM STATUS

SUBSYSTEM SUBSYSTEM RETAINED LOST NON-RLS UPDATE

NAME STATUS LOCKS LOCKS PERMITTED

--------- -------------- ---------------- ---------- --------------------------

AOR1 ONLINE--FAILED YES NO NO

RLS/CICS Automation
Enhancements

�QUIOPEN/QUICLOSE Interface

�QUICLOSE interface is used by CICS to fully close a data set around the
sysplex.
�SMSVSAM drives CICS quiesce exit which issues closes for all regions open to
the data set.

�SMSVSAM updates the catalog and marks the data set as quiesced.

�RLS opens against a quiesced data set will be failed.

�QUIOPEN interface is used by CICS to enable a data set to be reopened
for RLS use.
�SMSVSAM drives CICS quiesce exit to ALL CICS regions registered with RLS.

�SMSVSAM updates the catalog and marks the data set as unquiesced.

�Invoked with the following commands:
�V SMS,SMSVSAM,SPHERE(spherename),Q

�V SMS,SMSVSAM,SPHERE(spherename),E

�F cicsname,CEMT SET DSN(RLSADSW.VFA1D.*),QUI

�F cicsname,CEMT SET DSN(RLSADSW.VFA1D.*),UNQ

Transactional VSAM (TVS)

Transactional VSAM (TVS)

�Enhance VSAM Record Level Sharing (RLS) to provide
data recovery capabilities for any application exploiting
VSAM RLS.

�VSAM RLS data recovery capabilities include:

�transactional recovery

�data set recovery

�VSAM RLS becomes a "transactionalized" access method,
or is now referred to as "Transactional VSAM" (TVS).

System Requirements -
Hardware/Software Requirements

�Parallel sysplex running z/OS 1.4 or higher with VSAM RLS
implemented.

�z/OS Transactional VSAM (separately priced feature).

�z/OS RRMS implemented.

�z/OS System Logger implemented.

�CICS VSAM Recovery (CICVR) Utility (optional)

Application Requirements - Data Set
Changes

�Data sets accessed by RLS must have a LOG parm
specifed in the catalog. Valid values are:

�LOG(NONE) - Non-recoverable data set. Can be opened for input/output
by any RLS application.

�LOG(UNDO) - Recoverable data set requiring backout (UNDO) logging.
Can be opened for input/output by RLS recoverable subsystems (i.e.
CICS) and/or RLS applications running on a z/OS system with the TVS
feature installed.

�LOG(ALL) - Recoverable data set requiring both backout (undo) and
forward recovery logging. Can be opened for input/output by RLS
recoverable subsystems (i.e. CICS) and/or RLS applications running on a
z/OS system with the TVS feature installed.

Application Requirements - Data Set
Changes (cont)

�Data sets defined as LOG(ALL) must also have a
LOGSTREAMID(fowardrecoverylogname) specified in the
catalog.

Application Requirements - Data Set
Define/Alter Example

DEFINE CLUSTER (NAME(recoverabledataset) -

RECORDSIZE(100 100) -

STORCLAS(storclasname) -

FSPC(20 20) -

LOG (ALL) -

SHAREOPTIONS(2 3) -

LOGSTREAMID(forwardrecoverylog) -

CISZ(512) -

KEYS(06 8) INDEXED -

) -

DATA(NAME(recoverabledataset.DATA) -

VOLUME(volser) -

TRACKS (1,1)) -

INDEX(NAME(recoverabledataset.INDEX) -

VOLUME(volser) -

TRACKS (1,1))

Application Requirements –
RLS/TVS Access Options

�Transactional VSAM support occurs when:

�ACB MACRF=(RLS,OUT) for recoverable data set (LOG(UNDO|ALL))

�ACB MACRF=(RLS,IN), RLSREAD=CRE .

�//ddname DD DSN=recoverabledatasetname,DISP=shr,RLS=(CR|NRI)
and ACB MACRF=(OUT)

�//ddname DD DSN=datasetname,DISP=shr,RLS=CRE and ACB
MACRF=(IN)

Application Requirements -
Transactional Recovery

�RLS applications opening recoverable data sets on z/OS
with the TVS feature installed, should be modified to add
SRRCMIT and SRRBACK interfaces.

�SRRCMIT and SRRBACK will either commit or backout the
unit of recovery (UR) provided by SMSVSAM on behalf of
the VSAM RLS application.

� Explicitly committing or backing out the UR will release
record level locks in a timely fashion. Failure to do so may
impact other sharers of the data set.

�SMSVSAM will implicitly issue a commit or backout at EOT,
if the VSAM application fails to do so.

Application Requirements -
Supported Languages

�High level language support for RLS and RRS interfaces:

�PLI

�C & C++

�COBOL

�Assembler

Application Requirements - Explicit
Commit Example

//ddname DD DSN=Recoverabledatasetname,DISP=SHR

//step1 EXEC PGM=vsamrlspgm

Begin JOB Step ------------------------------------- No locks held

OPEN ACB MACRF=(RLS,OUT)

(UR1)

GET UPD record 1------------------------------------ Obtain an exclusive lock on record 1

PUT UPD record 1 ---------------------------------- Lock on record 1 remains held

GET repeatable read record n-------------------- Obtain a shared lock on record n

PUT ADD record n+1-------------------------------- Obtain an exclusive lock on record n+1

GET UPD record 2 ---------------------------------- Obtain an exclusive lock on record 2

PUT UPD record 2 ----------------------------------- Lock on record 2 remains held

Call SRRCMIT --- Commit changes, all locks released .

CLOSE

End of JOB Step

Application Requirements - Implicit
Commit Example

//ddname DD DSN=Recoverabledatasetname,DISP=SHR

//step1 EXEC PGM=vsamrlspgm

Begin JOB Step --------------------------------------- No locks held

OPEN ACB MACRF=(RLS,OUT)

(UR1)

GET UPD record 1------------------------------------ Obtain an exclusive lock on record 1

PUT UPD record 1 ---------------------------------- Lock on record 1 remains held

GET repeatable read record n-------------------- Obtain a shared lock on record n

PUT ADD record n+1-------------------------------- Obtain an exclusive lock on record n+1

GET UPD record 2 ---------------------------------- Obtain an exclusive lock on record 2

PUT UPD record 2 ----------------------------------- Lock on record 2 remains held

CLOSE -- All Locks are retained

End of JOB Step (normal)-------------------------- Commit changes release all locks

Application Requirements - Explicit
Backout Example

//ddname DD DSN=Recoverabledatasetname,DISP=SHR

//step1 EXEC PGM=vsamrlspgm

Begin JOB Step --------------------------------------- No locks held

OPEN ACB MACRF=(RLS,OUT)

(UR1)

GET UPD record 1------------------------------------ Obtain an exclusive lock on record 1

PUT UPD record 1 ---------------------------------- Lock on record 1 remains held

GET repeatable read record n-------------------- Obtain a shared lock on record n

PUT ADD record n+1-------------------------------- Obtain an exclusive lock on record n+1

GET UPD record 2 ---------------------------------- Obtain an exclusive lock on record 2

PUT UPD record 2 ----------------------------------- Lock on record 2 remains held

Call SRRBACK --------------------------------------- Undo changes, all locks released .

CLOSE

End of JOB Step

Application Requirements - Implicit
Backout Example

//ddname DD DSN=Recoverabledatasetname,DISP=SHR

//step1 EXEC PGM=vsamrlspgm

Begin JOB Step --------------------------------------- No locks held

OPEN ACB MACRF=(RLS,OUT)

(UR1)

GET UPD record 1------------------------------------ Obtain an exclusive lock on record 1

PUT UPD record 1 ---------------------------------- Lock on record 1 remains held

GET repeatable read record n-------------------- Obtain a shared lock on record n

PUT ADD record n+1-------------------------------- Obtain an exclusive lock on record n+1

GET UPD record 2 ---------------------------------- Obtain an exclusive lock on record 2

PUT UPD record 2 ----------------------------------- Lock on record 2 remains held

--------------------------------------- Cancel --

End of JOB Step (abnormal) ----------------------- Undo changes release all locks

Information about TVS

Information about DFSMS and TVS

�www.storage.ibm.com/software/sms/index.html

�www.storage.ibm.com/software/sms/tvs/index.html

Additional Information

�www.redbooks.ibm.com

� Transactional VSAM Presentation Guide SG24-6973

� Transactional VSAM Overview and Planning Guide SG24-6971

� Transactional VSAM Application Migration Guide SG24-6972

� VSAM Demystified SG24-6105

Multiple Lock Structure (MLS)

Multiple Lock Structure
� Multiple Lock Structures (MLS), goal of this function is to remove the single

point of failure of one lock structure in the current VSAM RLS design

– Current Locking Design

– Current Locking Design - Issues

– Multiple lock Structure Design

Current Locking Design

� The current design of locking uses one coupling facility (CF) lock structure,

IGWLOCK00, which contains:

– Record locks and record data (retained locks)

– System "Special" locks:

• Sphere, component, subsystem locks and data set related record

data

Current Locking Design - Issues

� The current locking design has two issues:

– IGWLOCK00 represents a single point of failure in the sysplex:

• A "run away" application could fill IGWLOCK00 with record

locks, causing all RLS application's lock requests in the sysplex to

fail.

– IGWLOCK00 could cause performance issues:

• All RLS locking activity against a single lock structure in a single

CF

Proposed Design - Multiple Lock Structure
� Continue to support IGWLOCK00 as the "primary" lock structure, which will

contain:

– Record locks and record data for data sets not using the new MLS support

– System "special" locks:

• Sphere, component, subsystem locks and data set record data.

– "Lock structure" lock (associates data sets to lock structures)

� Add new "secondary" lock structures, which will contain:

– Record locks and record data for data sets using the new MLS support

� Assign data sets to "secondary" lock structures via a new "lock set" parameter on

the SMS STORCLAS construct

– A "secondary" lock structure will be assigned from the list of lock structures

specified in the lock set parameter

– If the lock set parameter is blank, IGWLOCK00 will be assigned as the default

Mulitple Lock Structure Example

SYSTEM1 SYSTEMn

SMSVSAM

IGWLNRLB

IGWRETLK

CF2

Lock Table

Record Table

Record lock

RTE record lock

RLSLOCK_TEST00

CF1

Lock Table

Record Table

Record lock

RTE record lock

Lock Table

Record lock

Record Table
RTE record lock

RLSLOCK_PROD00

IGWLOCK00

Record data

Special lock

LS lock

DataSet2
STORCLAS
(SC_TEST)

SMSVSAM

IGWLNRLB

IGWRETLK

DataSet1
STORCLAS
(SC_PROD)

Recommended APARs

Recommended APARs

�OA21101

�D SMS,SMSVSAM,QUIESCE

�OA19421

�Move index buffer above the bar for release 1.7 and above

�OA19975

�Change the wait time for the castout lock in the RLS read path
from 0.03second/0.000026 seconds to 0.0015 seconds.

�OA16676, OA16870, OA17643

�Remove Assignedspheres ENQ hang

Recommended APARs

�OA17644, OA18070, OA18541, OA18285, OA18688,
OA18902

�SCM RAS APARs

�OA20367

�RLS/Catalog hang in Open/Delete

�OA21705

�Fix the storage leaks in MMFSTUFF dataspace

�OA18933

�SSF compress/expand pool failure

Recommended APARs

�OA17556

�D SMS,SMSVSAM,DIAG(CONTENTION)

�Display TCBs in latches contention

� OA12045, OA12851, OA16982

�IP VERBX IGWFPMAN ‘F(IPCS)’ From IPCS Panel

�Q - Analyze current Failure

� AS - Analyze current Address Space Threads

� POOLS - Analyze SSF Pools

D SMS,SMSVSAM,DIAG(CONTENTION) - example #1

SYSTEM1 d sms,smsvsam,diag(contention)
SYSTEM1 IGW343I VSAM RLS DIAG STATUS (V.01)
|---RESOURCE----| |------ WAITER ------| |--HOLDER---| ELAPSED

TYPE ID JOB NAME ASID TASK ASID TASK TIME
-------- -------- -------- ---- -------- ---- -------- --------

LATCH 7F158C70 SMSVSAM 003A 008DA250 003A 008D7218 00:00:06
DESCRIPTION: IGWLYSPH - SHM OBJECT POOL

LATCH 7F151E78 SMSVSAM 003A 008D7218 003A 008DC1C8 00:00:21
DESCRIPTION: IGWLYDTS - SHM OBJECT POOL

LATCH 7BAD43B8 SMSVSAM 003A 008DC1C8 002D 007F3000 00:19:09
LATCH 7BAD43B8 SMSVSAM 003A 008D5A48 002D 007F3000 00:22:09
LATCH 7BAD43B8 SMSVSAM 003A 008D6938 002D 007F3000 00:33:23
LATCH 07F1B1D0 SMSVSAM 003A 008D64F8 003A 008D6CF0 01:47:20
LATCH 07F1D3B8 SMSVSAM 003A 008D6CF0 0000 00000000 11:23:30

Recommended APARs

D SMS,SMSVSAM,DIAG(CONTENTION) - example #2

SYSTEM1 d sms,smsvsam,diag(contention)
SYSTEM1 IGW343I VSAM RLS DIAG STATUS (V.01)
|---RESOURCE----| |------ WAITER ------| |--HOLDER---| ELAPSED

TYPE ID JOB NAME ASID TASK ASID TASK TIME
-------- -------- -------- ---- -------- ---- -------- --------

LATCH 7BAD43B8 SMSVSAM 003A 008D5A48 003A 007F3000 00:22:09
LATCH 07F1B1D0 SMSVSAM 003A 007F3000 003A 008D5A48 00:22:09
LATCH 07F1B1D0 SMSVSAM 003A 008D64F8 003A 008D5A48 00:22:24
LATCH 07F1B1D0 SMSVSAM 003A 008D6CF0 003A 008D5A48 00:23:30

Recommended APARs

IP VERBX IGWFPMAN ‘F(IPCS)’ - example

Function(F) Component AddressSpace Analysis IPCSPrint Help
---------------------SMS PDSE IPCS MAIN--

COMMAND===>

Function() Component() CB@(00000000)

JOB(SMSVSAM) or ASID(000A)

VERB===> IGWFPMAN

Primary(000A : SMSVSAM) Secondary(000A : SMSVSAM)

Dump: Dump Name
Title: Dump Title

Recommended APARs

Summary

�RLS provides full read/write integrity to your existing VSAM
files.

�RLS can improve both performance and availability in your
CICS and non-CICS VSAM environments.

�RLS provides data protection after a system failure.

�RLS provides automation for data recovery.

�Improved RAS

�Minimal application/configuration changes required.

Summary

�RLS has been enhanced to perform data recovery in the
form of:

� transactional recovery

� data set recovery.

�VSAM RLS Applications can take advantage of RLS's new
data recovery by using the RRS commit and backout
protocols.

�VSAM RLS Applications should reconsider restart
procedures in a shared environment.

Trademarks
DFSMSdfp, DFSMSdss, DFSMShsm, DFSMSrmm, IBM, IMS, MVS, MVS/DFP, MVS/ESA, MVS/SP,
MVS/XA, OS/390, SANergy, and SP are trademarks of International Business Machines Corporation
in the United States, other countries, or both.

AIX, CICS, DB2, DFSMS/MVS, Parallel Sysplex, OS/390, S/390, Seascape, and z/OS are registered
trademarks of International Business Machines Corporation in the United States, other countries, or
both.

Domino, Lotus, Lotus Notes, Notes, and SmartSuite are trademarks or registered trademarks of
Lotus Development Corporation. Tivoli, TME, Tivoli Enterprise are trademarks of Tivoli Systems Inc.
in the United States and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both. UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

